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SUMMARY 

We present an algorithm for introducing a global constraint of volume conservation in lake circulation 
problems. The algorithm is described for linear problems, and is then generalized to non-linear cases. 
Numerical examples are presented to show the influence of water-level conditions on convergence and to 
demonstrate the practical superiority of the global constraint algorithm for obtaining reliable convergent 
solutions. 

INTRODUCTION 

The finite element modelling of hydraulic flow problems is considered reliable and efficient by 
practising engineers. Since the pioneering works of Taylor and Hood,' and Connor and Brebbia2, 
various researchers have given significant contributions to make the method robust and versatile 
for practical applications. One may mention a recent simulation study of the water system of the 
Montreal archipelago employing finite elements, which has been accepted to be highly economical 
and rapid by the environmental engineers and biologists of Hydro -Q~ebec .~  

For practical applications, boundary conditions have to be properly chosen and introduced in 
the model. In free surface flows, it is observed that the convergence and precision are very sensitive 
to water-level variations. In a recent work on three-dimensional wind-induced lake c i rc~la t ion ,~  it 
has been shown that the quality and convergence of a solution are closely related to the proper 
definition of water-level boundary conditions. In fact, it is not possible to choose a water-level 
reference point, as it varies significantly with wind direction and intensity and the geometry of the 
domain. The most appropriate condition for recirculation is conservation of total volume, and all 
water level variations must be subjected to this global constraint for a realistic solution 
convergence. 

The present model contains the horizontal velocity components u(x ,  y ,  z )  and u(x, y ,  z )  and the 
water level h ( x , y ) ,  all as unknowns. Since the model is stationary, one necessarily requires an 
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explicit boundary condition on h to conserve volume. However, if a temporal formulation is 
employed, no explicit volume conservation constraint may be required since it is included in the 
formulation. 

In this study, we discuss through numerical examples the importance of this global constraint on 
the solution of lake circulation problems and present an algorithm to introduce such a constraint 
so as to keep the generality and efficiency of a solution strategy in computer code for non-linear 
problems. 

FORMULATION 

A finite element model for a non-linear and non-stationary problem leads to a set of algebraic 
equations? 

W = (SU) (R(U)} = 0, 
or 

{ R W ) }  = {Fl - CK(U)l {UI = 0, (1) 

where { U }  represents the unknowns and { SU} the corresponding variations; { F} is the load 
vector, { R )  is the residue vector and [K] is the coefficient matrix. 

Equation (1) is solved by a variant of Newton’s method after introducing boundary conditions of 
the type 

(2) 
- ui = ui. 

A global constraint among certain variables U i  representing water levels, for example, leads to a 
condition of the type 

<a>{U> = vo, (3) 

where ( a )  is a vector of non-zero area weighting coefficients for the water-level components of {U} 
and V, is the volume to be conserved. 

Equation (3) may be used to define one variable U p  (representing water level) in terms of other 
variables in order to eliminate it from equation (1). This would introduce undesirable restructuring 
of the matrix [K] and is difficult to implement in a standard computer code. In the following 
sections, we present an algorithm for introducing such a constraint requiring no matrix 
restructuring. For a better understanding, the presentation starts with a linear problem followed 
by a non-linear problem. 

LINEAR MODEL 

Let us consider a problem defined by 

w = ( SU ) ( CK1 {U> - { F } 1 = 0 7 

or 
CKI {UI = {F). 

The condition (3) may be introduced in equation (4) directly by defining 

V 
U p  = 2- (Ii){U}, 

6 U p =  - ( % ) { 6 0 } .  

UP 

where tii = ui/up and the pth component is removed: 
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The component p is chosen such that a, # 0 and is preferably the largest in absolute value. 
Equations (5) are used to eliminate U p  and 6 U ,  from equation (4), leading to a completely 
restructured matrix with an undesirably large bandwidth. If all coefficients Gi are non-zero, the 
modified matrix [K] will be full. 

Obviously, in practical studies, such a technique for introducing the constraint is to be discarded. 
We present thus an indirect method which requires no restructuring of the matrix [K] and is thus 
efficient from a computational point of view. 

One seeks the solution of equation (4) under two separate conditions of U p :  the solution {U,} 
from U p  = 0 and the solution {U,} from U p  = 1. The two solutions are then combined to obtain 
{U} satisfying equation (3):  

[ K l { U F } = { F } ,  (64  

with 

Hi=O, i#p;H,=k,,+A. 

Equations (6) are solved using the same triangulatization of [K] with two loads vectors {F} and 
{H}. There is no matrix restructuring except the modification of the diagonal term k,, by a large 
value A .  This would lead to U p  z 0 for equation (6a) and to U p  N 1 for equation 6(b). The value of A 
is large as compared to the largest component of the pth line in absolute value:5 

.= 108. 
A 

max Ikpi I 
Then 

so that 

leading to 

The increase in computational effort due to having two load vectors, {F} and {H}, is relatively 
small and this technique may be easily implemented in a computer code. 

Remark 

We employ the technique of a large diagonal term in order to introduce the constraint on the U p  
component. This is primarily due to the general structure of our computer code, which considers 
the turbulent boundary layer through a diagonal term on the appropriate nodes. However, if one 
encounters numerical instability, one may explicitly eliminate the pth line and column of [K] and 
modify the corresponding {F} and {H} in equation (6) for U p  = 0 and U p  = 1. In the case studies we 
have undertaken on VAX-VMS machines with double precision, no numerical instability has been 
observed with the large diagonal term technique. 

NON-LINEAR PROBLEM 

The introduction of the constraint ( 3 )  follows similar steps to those of the linear case; let 

{ R } = { F } - [ K ( U ) ] { U } = O .  (9) 
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The Newton-Raphson solution method for (9) is 

$1) = J - [K(U') ( u l )  1 3  

[K;]{AU} = { R ' ) ,  (10) 

{U"') = ( U ' ) + U { A U ~ } ,  

where [KT] is the tangent matrix, z is the relaxation parameter and i is the iteration level. 
The constraint ( 3 )  in incremental form becomes 

The introduction of the constraint (1 1) in the Newton-Raphson solution method is presented in 

I .  Iteration i 

the following algorithmic form: 

compute the residual (R) and AVO 
compute [KT] and modify k T , ,  = kT,, + A 
triangularize [KT] 
calculate i. 

(AU} = (AURJ. +A{AUH) 
update the solution: ( U )  = ( U )  + a(AU}. 

2. Convergence test. 

NUMERICAL EXAMPLES 

In order to observe the importance of the water-level constraint for wind-induced flows, we present 
an academic and a real-life problem. The fluid flow is represented by three-dimensional Navier- 
Stokes equations for free surface flows with an approximation of hydrostatic pressure and 
homogeneous density. The finite element model employs an 18-node prismatic element having two 
horizontal velocity components associated with each node; the water level is assumed to vary 
linearly associated with three nodes of an element lying in the surface. The vertical velocity w is 
assumed constant per element and is obtained from the continuity equation. The details of the 
model may be found in Reference 4. 

We study the wind-induced flow in a closed canal as shown in Figure 1. The results are given by 
Baines and Knapp.6 In our preliminary tests, different types of boundary conditions in water levels 
have been introduced in order to assess the sensitivity of convergence of the non-linear model: 

A: exact water level values on both ends of the canal 
B: zero value (relative water level) at the node lying in the middle 
C: zero value (relative water level) at both side nodes in the middle 
D: global volume conservation choosing different points for U p .  

Condition A led to rapid convergence, verifying the overall functioning of the non-linear model. 
However, for practical situations, such a choice is not available. Condition B was found to be 
divergent, whereas condition C seems to converge slowly provided that the non-linear influences 
are introduced slowly (five steps with three iterations each). Again for real situations, it is not easy 
to locate the position of zero water levels; thereby, condition C has no practical value. 
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The introduction ofcondition D led to a very rapidly convergent solution with one step and three 
iterations. The constraint U p  is chosen at different nodes and the solution convergence and 
precision seems to be independant of the choice of node U p .  

Finally, we study the wind-induced circulation in the lake Saint-Jean located in the middle north 
of the province of Quebec in Canada. This problem represents a real-life flow, where it is not 
possible at all to locate the zero level points. We introduced simply a global volume conservation 
constraint as discussed above and the convergent solution was obtained in only one step with six 
iterations. Typical water level contours are shown in Figure 2. The details of the study may be 
found in Reference 4. 

CONCLUSION 

It  has been shown that wind-induced flows are highly sensitive to choice of water-level reference 
conditions for practical situations, in which the global constraint of volume conservation is the 
only available information for introducing water-level conditions. 

We have presented an algorithm for introducing a global constraint for a general non-linear 
problem, which is simple and easy to implement in a general computer code. 

Various numerical tests have shown that the convergence characteristics of lake circulation 
problems are surprisingly improved through introduction of the constraint in the manner 
presented in this study. Moreover, the technique has proved to be robust and economical for the 
problems studied so far. 

Figure 2. Relative water level contours for a mean soilth-west wind-lake Saint-Jean, Quebec4 
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One may easily employ this technique of introducing global constraints to other situations 
arising in flow problems, contact problems in elasticity or structural mechanics problems. 
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